Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ageing Res Rev ; 96: 102276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499161

RESUMO

Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.


Assuntos
Amiloidose , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Amiloide/metabolismo , Amiloidose/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Proteínas Amiloidogênicas , Percepção
2.
Bioinformation ; 12(3): 135-139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28149048

RESUMO

Breast cancer is one of the most common cancers in women around the globe Tamoxifen is used for the last 40 years as an endocrine therapy for breast cancer. This resulted in the reduction of mortality rate by 30% and it still remains one of the most effective therapies against breast cancer. However, resistance against tamoxifen is still one of the major hurdles in the effective management of breast cancer. Intense research has been conducted in the past decade to further explore its resistance mechanism, but still a lot of research will be needed to effectively alleviate this problem. Several biochemical factors and molecular pathways, such as the modulation of ER signaling, upregulation of growth factors had been observed as key factors for tamoxifen resistance (TR). After, initial therapy of five to ten years, breast cancer patients develops resistance towards this drug. The resistance leads to the development of other cancers like uterine cancer. Here, we briefly explore all the molecular events related to tamoxifen resistance and focus on its mechanism of action as well as other pharmacological approaches to better its beneficial effects in the treatment of breast carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA